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Improved Conditioning of Finite Element Matrices
using New High Order Interpolatory Bases

R. Rieben D. White and G. Rodrigue

Abstract—
The condition number of finite element matrices constructed

from interpolatory bases will grow as the polynomial degree of
the basis functions is increased. The worst case scenario for
this growth rate is exponential and in this paper we demonstrate
through computational example that the traditional set of uni-
formly distributed interpolation points yields this behavior. We
propose a set of non-uniform interpolation points which yield
a much improved polynomial growth rate of condition number.
These points can be used to construct several types of popular
hexahedral basis functions including the 0-form (standard La-
grangian), 1-form (Curl conforming) and 2-form (Divergence con-
forming) varieties. We demonstrate through computational exam-
ple the benefits of using these new interpolatory bases in finite el-
ement solutions to Maxwell’s equations in both the frequency and
time domain.

I. INTRODUCTION

We are concerned with the finite element solution of
Maxwell’s equations on unstructured hexahedral grids. This
process generally involves the solution of large linear systems
and for the case of time domain simulations, these systems
may need to be solved one or more times per simulation time
step. As such the conditioning of these linear systems be-
comes increasingly important as their sizes increase [1], [2].
Recently, high order finite element methods have been devel-
oped and used with great success in the field of computational
electromagnetics (CEM) [3]. High-order methods can yield ex-
tremely accurate and efficient results for certain problems with
smoothly curved boundaries, and they can drastically reduce
the effects of numerical dispersion [4], [5]. Such methods are
based on a set of polynomial basis functions which are in turn
built from a set of interpolatory polynomials. As the polyno-
mial degree p is increased, the eigenvalue spectrum of the re-
sulting finite element matrices will grow, thus causing the con-
dition number of the matrix to grow as well. The worst case
scenario is exponential growth of matrix condition number as a
function of p.

Several investigations into the conditioning of finite element
matrices have been performed using various types of bases. In
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[6], the conditioning of finite element solutions to the two di-
mensional scalar elliptic problem is investigated using a class of
interpolatory basis functions which use the Gauss-Lobatto in-
terpolation points. It is shown that a condition number growth
rate of O(p) can be achieved for the stiffness matrix. In [7],
the condition number of diagonally scaled matrices is investi-
gated using hierarchic Nedelec curl-conforming (or 1-form) ba-
sis functions on hexahedral elements. It is shown that an upper
bound for the growth of the condition number of the global stiff-
ness matrix using these hierarchical bases is O(p4) for problems
in which the characteristic frequency is much greater than p. In
[8], a set of hierarchical 1-form basis functions are defined for
the frequency domain vector Helmholtz equation. The basis
functions are designed to be nearly orthogonal over tetrahedral
meshes, yielding rapid convergence for problems with regular
domains. In [9], it is shown that the preconditioned conjugate
gradient (PCG) method is scalable when used to invert mass
matrices arising from vector finite element discretizations of the
time domain Maxwell equations. For the case of first order ba-
sis functions, it is also shown that the condition number of the
diagonally scaled mass matrix remains constant as the size of
the mesh increases provided the ratio of the mesh lengths re-
mains constant.

In this paper we demonstrate a way to achieve polynomial
growth as a function of p for the special case of hexahedral
interpolatory bases. This growth rate is achieved by using a
special set of non-uniformly spaced interpolation points in con-
junction with a new set of polynomial basis functions (and sub-
sequent degrees of freedom). We demonstrate the improved
iterative solution time obtained with these new basis functions
for a series of frequency and time domain problems using a va-
riety of iterative solvers and preconditioners.

In this paper we use differential forms as a convenient
way of classifying the various field types involved in solving
Maxwell’s equations. In addition, the calculus of differential
forms provides the necessary transformation rules which allow
complicated basis functions to be derived on a reference ele-
ment and then mapped to global mesh elements. Table I lists
various physical quantities in electromagnetics and their asso-
ciated differential form.

II. CHOICE OF INTERPOLATION POINTS

The Lagrange interpolatory polynomial of degree p is de-
fined by a distinct set of p + 1 real valued interpolation points
denoted by the symbol X , such that X = {X0,X1, . . . ,Xp}. The
polynomial is constructed in such a way that it has a value of
unity at interpolation point i and a value of zero at every other
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Physical Quantity Units Differential Form

Scalar Potential V/m0 0-form
Electric Field Intensity V/m1 1-form
Magnetic Field Intensity A/m1 1-form
Electric Flux Density C/m2 2-form
Magnetic Flux Density W/m2 2-form
Electric Charge Density C/m3 3-form

TABLE I
PHYSICAL QUANTITIES AND THEIR ASSOCIATED DIFFERENTIAL FORMS

interpolation point. The precise definition for the Lagrange in-
terpolatory polynomial of degree p is given by

Lp
i (x;X) =

p

∏
j=0
j 6=i

(x−X j)

(Xi −X j)
(1)

The set of p + 1 interpolation points, X , can at this point be
arbitrary. Traditionally, the set X consists of p+1 interpolation
points uniformly distributed over the unit interval. This set is
simple to generate but turns out to yield the worst case scenario
of exponential growth of condition number as a function of p,
as shown in Sections V – VII.

In the field of approximation theory, various sets of interpo-
lation points over the unit interval have been investigated. For
a given value of p, there exists an optimal set of interpolation
points which will yield a minimum Lebesgue constant (a mea-
sure of the interpolating polynomial’s performance); unfortu-
nately there is no analytic formula for generating these points
in an efficient manner. However, it turns out that the zeros of
certain orthogonal polynomials can yield near optimal results.
For example, Chebyshev points or Gauss-Lobatto points can be
used to construct nearly optimal interpolatory polynomials. We
follow the results of [10] and note that there is a near optimal set
of points that can be computed quite easily. This set of points,
referred to as the extended Chebyshev set, is generated by com-
puting the zeros of the Chebyshev polynomial of the first kind,
then applying a linear transformation to map the results over
the domain [0,1]. Let X̄ p denote the extended Chebyshev set of
p+1 interpolation points over the domain [0,1] defined as

X̄ p = {
−cos[(2i+1)π/(2p+2)]

2cos[π/(2p+2)]
+

1
2

; i = 0,1, . . . , p} (2)

While optimal interpolation points X have been investigated
from the point of view of approximation, we show via com-
putational experiments that the conditioning of finite element
matrices is strongly dependent upon the choice of interpola-
tion points, with uniform points yielding exponential growth of
condition number, and non-uniform points yielding polynomial
growth of condition number.

III. BASIS FUNCTIONS

We now present explicit formulae for the construction of in-
terpolatory basis functions. We perform all computations on a

reference element Ω̂ (all objects explicitly defined on the refer-
ence element will be accented with a hat symbol). There exists
a mapping Φ from the reference element Ω̂ to the actual element
Ω. This mapping (defined by interpolatory shape functions) and
its Jacobian are defined as

r = Φ(r̂); Ji, j =
∂r j

∂r̂i
(3)

where r̂ ∈ Ω̂ and r ∈ Ω. Unlike the approach presented in [3],
we define all basis functions on the reference element and trans-
form them as necessary during the finite element assembly pro-
cedure. As such, we also present the appropriate transformation
rules which map the basis functions from the reference element
to physical mesh elements.

For clarity, we will denote the three independent variables in
the reference system using the standard Cartesian notation of
(x̂, ŷ, ẑ). In addition, we will denote contra-variant basis vectors
as x̂, ŷ and ẑ, while covariant basis vectors will be denoted as
X̂, Ŷ and Ẑ. This is a trivial distinction since these basis vectors
are identical, have unit magnitude, and are constant over the
domain of the reference hexahedron. However, we make the
distinction to emphasize the different transformation properties
of the bases associated with these vectors. We also omit the
interpolation points X from the Lagrange interpolatory poly-
nomials, implying that the set may be arbitrary; however, for
improved matrix conditioning the extended Chebyshev points
from (2) should be used. In order to ensure the proper confor-
mity across element to element interfaces, it is crucial that the
basis functions (and consequently the degrees of freedom) be
associated with the various sub-simplices of the element (e.g.
nodes, edges, faces, etc . . . ). This property is referred to as
locality [11]. As such, we decompose all of the bases into sub-
sets corresponding to the sub-simplex they are associated with.
The dimensions of these subsets will in general be number of
sub-simplices per element times number of degrees of freedom
per sub-simplex.

A. 0-form Basis Functions

Let N̂ denote a 0-form basis on the reference element. In
order to satisfy the locality property, we can break this set of
basis functions into four mutually disjoint subsets such that

N̂ = N̂n ∪ N̂e ∪ N̂ f ∪ N̂v (4)

where the subscripts n,e, f and v denote the nodes, edges, faces
and volume of the reference element respectively. For 0-forms,
locality implies that the node basis functions should have non-
zero values at one and only one node. The edge basis functions
will have a non-zero value along one and only one edge and
zero values at all of the nodes. The face basis functions will
have non-zero values inside one and only one face with zero
values at all of the nodes and along all of the edges. Finally, the
volume basis functions will be zero at all of the nodes, along all
of the edges and inside all of the faces. The 0-form node basis
functions of polynomial degree p are given by

N̂n =
{

Lp
i (x̂)Lp

j (ŷ)L
p
k (ẑ); i, j,k = 0, p

}

(5)
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yielding 1 basis function per node. The 0-form edge basis func-
tions of polynomial degree p are given by

N̂e =











Lp
i (ŷ)Lp

j (ẑ)L
p
k (x̂)

Lp
i (x̂)Lp

j (ẑ)L
p
k (ŷ)

Lp
i (x̂)Lp

j (ŷ)L
p
k (ẑ)

(6)

i, j = 0, p; k = 1, . . . , p−1

The indices i and j loop over the 4 edges parallel to either the
x,y or z axis. The index k loops over the p− 1 basis functions
per edge for a total of 12(p− 1). The 0-form face basis func-
tions of polynomial degree p are given by

N̂ f =











Lp
i (x̂)Lp

j (ŷ)L
p
k (ẑ)

Lp
i (ŷ)Lp

j (x̂)L
p
k (ẑ)

Lp
i (ẑ)Lp

j (x̂)L
p
k (ŷ)

(7)

i = 0, p; j,k = 1, . . . , p−1

The index i loops over the 2 faces that are normal to either the
x,y, or z axis. The indices j and k loop over the (p− 1)2 basis
functions in each face for a total of 6(p− 1)2. Finally, there
will be a total of (p−1)3 0-form basis functions that are inter-
nal to the reference element (i.e. functions not shared between
elements), given by

N̂v =











Lp
i (x̂)Lp

j (ŷ)L
p
k (ẑ)

Lp
i (ŷ)Lp

j (ẑ)L
p
k (x̂)

Lp
i (ẑ)Lp

j (x̂)L
p
k (ŷ)

(8)

i, j,k = 1, . . . , p−1

B. 1-form Basis Functions

Let Ŵ denote a 1-form basis on the reference element. In
order to satisfy the locality property, we can break this set of
basis functions into three mutually disjoint subsets such that

Ŵ = Ŵe ∪Ŵ f ∪Ŵv (9)

where the subscripts e, f and v denote the edges, faces and vol-
ume of the reference element respectively. For 1-forms, locality
implies that the edge basis functions should have non-vanishing
tangential components along one and only one edge. The face
basis functions will have non-vanishing tangential components
along one and only one face with no tangential components
along any edges. Finally, the volume basis functions will have
no tangential components along either edges or faces. The 1-
form edge basis functions of polynomial degree p are given by

Ŵe =











Lp
i (ŷ)Lp

j (ẑ)L
p−1
k (x̂) x̂

Lp
i (x̂)Lp

j (ẑ)L
p−1
k (ŷ) ŷ

Lp
i (x̂)Lp

j (ŷ)L
p−1
k (ẑ) ẑ

(10)

i, j = 0, p; k = 0, . . . , p−1

This set of functions is grouped into three sub-sets, one for each
contravariant basis vector. The indices i and j loop over the 4
edges that are tangent to these basis vectors. The index k loops

over the p basis functions per edge for a total of 12p. The 1-
form face basis functions of polynomial degree p are given by

Ŵ f =











































Lp
i (x̂)Lp

j (ẑ)L
p−1
k (ŷ) ŷ

Lp
i (x̂)Lp

j (ŷ)L
p−1
k (ẑ) ẑ

Lp
i (ŷ)Lp

j (ẑ)L
p−1
k (x̂) x̂

Lp
i (ŷ)Lp

j (x̂)L
p−1
k (ẑ) ẑ

Lp
i (ẑ)Lp

j (ŷ)L
p−1
k (x̂) x̂

Lp
i (ẑ)Lp

j (x̂)L
p−1
k (ŷ) ŷ

(11)

i = 0, p; j = 1, . . . , p−1; k = 0, . . . , p−1

This set of functions is grouped into six sub-sets, two for each
face representing the contravariant basis vectors that are in the
plane of that face. The index i loops over the 2 faces that are
coplanar to these basis vectors. The indices j and k loop over
the 2p(p−1) basis functions per face for a total of 12p(p−1).
Finally, there will be a total of 3p(p− 1)2 interpolatory basis
functions that are internal to the reference element given by

Ŵv =











Lp
i (ŷ)Lp

j (ẑ)L
p−1
k (x̂) x̂

Lp
i (x̂)Lp

j (ẑ)L
p−1
k (ŷ) ŷ

Lp
i (x̂)Lp

j (ŷ)L
p−1
k (ẑ) ẑ

(12)

i, j = 1, . . . , p−1; k = 0, . . . , p−1

C. 2-form Basis Functions

Let F̂ denote a 2-form basis on the reference element. In
order to satisfy the locality property, we can break this set of
basis functions into two mutually disjoint subsets such that

F̂ = F̂f ∪ F̂v (13)

where the subscripts f and v denote the faces and volume of the
reference element respectively. For 2-forms, locality implies
that the face basis functions will have non-vanishing normal
components along one and only one face while the volume ba-
sis functions will have no normal components along any of the
the faces. The interpolatory face basis functions of polynomial
degree p are given by

F̂f =











Lp
i (x̂)Lp−1

j (ŷ)Lp−1
k (ẑ) X̂

Lp
i (ŷ)Lp−1

j (x̂)Lp−1
k (ẑ) Ŷ

Lp
i (ẑ)Lp−1

j (x̂)Lp−1
k (ŷ) Ẑ

(14)

i = 0, p; j,k = 0, . . . , p−1

This set of functions is grouped into three sub-sets, one for each
of the covariant basis vectors. The index i loops over the 2 faces
that are normal to these basis vectors. The indices j and k loop
over the p2 basis functions per face for a total of 6p2. Finally,
there will be a total of 3p2(p−1) interpolatory basis functions
that are internal to the reference element given by

F̂v =











Lp
i (x̂)Lp−1

j (ŷ)Lp−1
k (ẑ) X̂

Lp
i (ŷ)Lp−1

j (x̂)Lp−1
k (ẑ) Ŷ

Lp
i (ẑ)Lp−1

j (x̂)Lp−1
k (ŷ) Ẑ

(15)

i = 1, . . . , p−1; j,k = 0, . . . , p−1
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D. Basis Function Transformation Rules

The basis functions presented are valid only in the reference
system. We therefore need a general procedure for transform-
ing functions defined in one coordinate system to another sys-
tem. In order to maintain coordinate independence, all prop-
erties of the functions defined in one coordinate system must
be preserved under a transformation to a new coordinate sys-
tem, this property is known as invariance [11]. For example,
invariance implies that 1-form basis functions defined to have
non-vanishing tangential components along only one edge in
the reference coordinate system, must also have non-vanishing
tangential components along only the same edge in the new
coordinate system. In addition, we would like the scaling of
the functions to be independent of the coordinate system used
to represent them. Table II gives the precise transformation
rules for 0-forms, 1-forms and 2-forms, their respective exte-
rior derivatives and the units of these transformations; all of
which can be derived using the calculus of differential forms.
The symbol m denotes an arbitrary metric of distance while the
symbol ◦ denotes composition.

Object Transformation Rule Units

0-form functions n◦Φ = n̂ m−0

Grad of 0-form (∇n)◦Φ = J−1(∇n̂) m−1

1-form functions w◦Φ = J−1ŵ m−1

Curl of 1-form (∇×w)◦Φ = 1
|J|J

T (∇× ŵ) m−2

2-form functions f◦Φ = 1
|J|J

T f̂ m−2

Div of 2-form (∇ · f)◦Φ = 1
|J| (∇ · f̂) m−3

TABLE II
TRANSFORMATION RULES

IV. DEGREES OF FREEDOM

In [12], a set of integral based degrees of freedom (DOF)
are presented which are presumed to be computed exactly. In
practice, such DOF can be computationally expensive to imple-
ment and cannot always be integrated exactly using numerical
quadrature. As such, we present a set of discrete DOF that are
based on evaluation of a function at a point. These point based
DOF satisfy the properties of invariance and locality and given
a set of basis functions, they can be used to enforce unisolvence.
Explicit knowledge of the DOF are not required for formation
of the mass and stiffness matrices, and hence are not presented
in many publications. However, the DOF are required for an
explicit interpolation operation which is used for many things
including the implementation of arbitrary boundary conditions,
projection of a solution onto a finer mesh (mesh refinement) or
on to a coarser mesh (multi-grid algorithms), and for special
mixed bilinear forms. For example, the 1-form interpolation
operator looks like

g ≈ Π(g) =
dim(W )

∑
i=1

Ai(g) wi; wi ∈W (16)

where the interpolation operator Π(g) denotes a basis function
expansion of g. It is also important to point out that unlike
the DOF for the bases of [3], our DOF are scale independent.
Because the basis functions of [3] are fully interpolatory, they
have no physical units associated with them; instead the DOF
carry the physical units of whatever field the basis functions are
discretizing, e.g. the curl-conforming basis functions are di-
mensionless while the corresponding degrees of freedom have
units of V/m for the case of the electric field. Because our in-
terpolatory basis functions are based on differential forms, they
have purely spatial units of m−l , where l is the degree of the
form. The following degrees of freedom will always carry the
physical units of the field that are not related to space (such
as voltage, current, charge, etc . . . ) and will always be scale
invariant.

Let X denote a set of p+1 interpolation points over the unit
interval [0,1] and X ′ denote a set of p interpolation points over
the same interval. The 0-form point degrees of freedom are
given by

A(n) =
{

n(Φ(Xi,X j,Xk)); i, j,k = 0, . . . , p
}

(17)

The 1-form point degrees of freedom are given by

A(w) =







w(Φ(X ′
i ,X j,Xk)) ·JT x̂

w(Φ(Xk,X ′
i ,X j)) ·JT ŷ

w(Φ(X j,Xk,X ′
i )) ·J

T ẑ
(18)

i = 0, . . . , p−1; j,k = 0, . . . , p

where x̂, ŷ and ẑ denote the contravariant basis vectors on the
reference element. The 2-form point degrees of freedom are
given by

A(f) =











f(Φ(Xi,X ′
j,X

′
k)) · |J|J

−1X̂
f(Φ(X ′

k,Xi,X ′
j)) · |J|J

−1Ŷ
f(Φ(X ′

j,X
′
k,Xi)) · |J|J−1Ẑ

(19)

i = 0, . . . , p; j,k = 0, . . . , p−1

where X̂, Ŷ and Ẑ denote the covariant basis vectors on the ref-
erence element.

The unisolvence property for degrees of freedom requires
that

Ai(g j) = δi, j (20)

for basis functions g j. This property must hold in order for basis
function expansions to be valid. In order to enforce unisolvence
for a given basis, we first construct the matrix

Vi, j = Ai(g j) (21)

This matrix forms a linear mapping that is similar to a Vander-
monde matrix. We can now apply this linear mapping to either
the basis g j or the degrees of freedom A in order to enforce uni-
solvence. In this paper we have presented basis functions with
particular properties that we would like to preserve; as such we
will apply the linear mapping to A in order to satisfy unisol-
vence. Because the degrees of freedom are linear functionals,
we can construct a new set of degrees of freedom, denoted A ′,
by the relation

A ′ = (V−1)T A (22)
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V. BILINEAR FORMS

In the Galerkin finite element procedure, we require bilinear
forms to construct a system of linear equations. Typically, these
bilinear forms involve integrals of basis functions, their deriva-
tives and possibly material property functions (i.e. dielectric
or magnetic property functions) over the volume of mesh ele-
ments. They are used to construct objects such as global mass
and stiffness matrices. In general, elements from an unstruc-
tured mesh will have non-trivial geometries, and as such, inte-
gration over the actual elements can be cumbersome and com-
putationally expensive. However, integration over the standard
reference element can be done quite easily and since the bases
are polynomial in nature, integration can quite often be done
exactly using a quadrature rule of the appropriate order. In addi-
tion, given the appropriate transformation rules the bases need
only be evaluated on the reference element then transformed
accordingly. This gives rise to a very computationally efficient
algorithm for computing finite element approximations. For a
given element topology and basis order,the basis functions only
need to be computed and sampled at the quadrature points once.
Then, for every element of the same topology in the mesh, the
results from the reference element can simply be mapped ac-
cording to the transformation rules. This can significantly re-
duce computational time and storage requirements for a typical
finite element computation

In the following explicit bilinear forms, Mα denotes a mass
matrix with a material property function α defined over an el-
ement Ω while Sγ denotes a stiffness matrix with a material
property function γ defined over an element Ω. The material
property functions are free to be (possibly tensor valued) func-
tions of space and will affect the scaling of each bilinear form.
For 0-forms, we have the following symmetric bilinear forms

Mα〈ni,n j〉 =

∫

Ω̂
((α◦Φ)n̂i) n̂ j |J| (23)

Sγ〈ni,n j〉 =
∫

Ω̂
((γ◦Φ)J−1∇n̂i) · (J−1∇n̂ j) |J| (24)

The 0-form mass matrix will have units of (or scale as) α m3

while the 0-form stiffness matrix will scale as γ m1, where m
denotes an arbitrary metric of distance. For 1-forms, we have
the following symmetric bilinear forms

Mα〈wi,w j〉 = (25)
∫

Ω̂
((α◦Φ)J−1ŵi) · (J−1ŵ j) |J|

Sγ〈wi,w j〉 = (26)
∫

Ω̂
((γ◦Φ)

1
|J|

JT (∇× ŵi)) · (
1
|J|

JT (∇× ŵj)) |J|

The 1-form mass matrix will scale as α m1 while the 1-form
stiffness matrix will scale as γ m−1. Finally for 2-forms, we
have the following symmetric bilinear forms

Mα〈fi, f j〉 = (27)
∫

Ω̂
((α◦Φ)(

1
|J|

JT f̂i)) · (
1
|J|

JT f̂ j) |J|

Sγ〈fi, f j〉 = (28)
∫

Ω̂
((γ◦Φ)

1
|J|

(∇ · f̂i)) (
1
|J|

(∇ · f̂j)) |J|

The 2-form mass matrix will scale as α m−1 while the 2-form
stiffness matrix will scale as γ m−3.

Given the previously defined bilinear forms, it is now pos-
sible to construct local (or single element) matrices and inves-
tigate their conditioning as a function of polynomial degree p.
Figures 1 - 3 show plots of the base 10 log of the condition
number of single element mass matrices constructed using the
explicit bilinear forms of (23), (25) and (27) in conjunction
with the basis functions from section III using two different
sets of interpolation points: uniform points and the extended
Chebyshev points of (2). For the vector valued 1-form and 2-
form basis functions, we use the shifted uniform interpolation
scheme of [3]. Note how the uniformly spaced interpolation
points yield exponential growth of condition number while the
extended Chebyshev points yield a much improved polynomial
growth.
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Fig. 1. Condition number of 0-form mass matrix using two different sets of
interpolation points.

VI. FREQUENCY DOMAIN EXAMPLES

We now present some numerical results in the frequency do-
main demonstrating the improved performance of the newly
proposed interpolatory bases. These examples involve the so-
lution of three different PDEs using both uniform and extended
Chebyshev interpolation points. In each example, the problem
is discretized over a hexahedral mesh of a unit cube subject to
a Dirichlet boundary condition and the resulting linear systems
are solved iteratively to a prescribed error tolerance. Each of
the PDEs can be represented discretely as a linear system of the
form

(

Sγ +(−1)l ω2 Mα

)

g = (−1)l+1 s (29)

where Sγ and Mα are stiffness and mass matrices respectively
computed using the appropriate bilinear form of section V, g is
the discrete vector representation of the field unknown, s is a
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Fig. 2. Condition number of 1-form mass matrix using two different sets of
interpolation points.
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Fig. 3. Condition number of 2-form mass matrix using two different sets of
interpolation points.

time harmonic source or load vector and l = 0,1,2 is the degree
of the differential form. In the following examples the symbol
Ω denotes the computational domain and ∂Ω denotes its sur-
face, the symbols g,s and h denote arbitrary functions.

A. Poisson Equation

The Poisson equation corresponds to the case l = 0 and ω = 0
from (29) and is of the form

∇ · (γ ∇g) = −s in Ω (30)

g = h on ∂Ω

where s is a source function (e.g. electric charge). For CEM,
this equation corresponds to the electrostatic field potential due
to a distribution of point charges described by the function γ. In
this case, the degrees of freedom from (17) will have units of
voltage while the basis functions of (4) will be dimensionless.
The discrete system of (29) is solved iteratively to a tolerance
of 10−10 using a conjugate gradient algorithm with a diagonally
scaled (or point Jacobi) preconditioner. Results are shown in
Figure 4.
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Fig. 4. Fixed mesh iteration count vs. polynomial degree for diagonally
scaled PCG linear solve of discrete Poisson equation using two different types
of interpolatory 0-form basis functions.

B. Vector Helmholtz Equation

The vector Helmholtz equation corresponds to the case l = 1
from (29) and is of the form

∇× (γ ∇×g)−ω2g = s in Ω (31)

g× n̂ = h on ∂Ω

where s is a vector source function (e.g. current). For frequency
domain CEM, this equation is very important; it corresponds to
the second order wave equation for the electric field due to a
distribution of time harmonic current (or voltage) sources; the
function γ represents the inverse of the permeability of the ma-
terial in which the electric field exists. It can also be used to
represent the resonant modes of a cavity. For this equation,
the degrees of freedom from (18) will have units of voltage
while the basis functions of (9) will have units of m−1. As men-
tioned in [8], the LHS of the discrete version of this equation
is not positive definite, therefore precluding the use of a PCG
algorithm. A such, we employ a generalized minimum resid-
ual (GMRES) method instead. The discrete system of (29) is
solved iteratively to a residual error tolerance of 10−8 using
an ILU preconditioned GMRES algorithm with a Krylov sub-
space dimension (or restart length) of 2500. Results are shown
in Figure 5. Note that the large jump in iteration count at p = 6
for the shifted-uniform basis is most likely due to the value of
the restart length.

C. Acoustic Wave Equation

The acoustic wave equation corresponds to the case l = 2
from (29) and is of the form

∇(γ ∇ ·g)+ω2g = −s in Ω (32)

g · n̂ = h on ∂Ω

where s is a vector source function. For CEM, the second order
grad-div operator of this equation arises in the field of magneto-
hydrodynamics (MHD) where it is used to describe electromag-
netic wave propagation in a magnetized plasma. In this case the
2-form field g is a pressure flux density, the degrees of freedom
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Fig. 5. Fixed mesh iteration count vs. polynomial degree for ILU precondi-
tioned GMRES linear solve of discrete vector Helmholtz equation using two
different types of interpolatory 1-form basis functions.

from (19) will have units of force while the basis functions of
(13) will have units of m−2. The discrete system is solved it-
eratively to a tolerance of 10−10 using a diagonally scaled pre-
conditioned conjugate gradient algorithm. Results are shown in
Figure 6.
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Fig. 6. Fixed mesh iteration count vs. polynomial degree for diagonally scaled
PCG linear solve of discrete acoustic wave equation using two different types
of interpolatory 2-form basis functions.

VII. TIME DOMAIN EXAMPLES

In these examples we solve Maxwell’s equations directly in
the time domain using the first order symplectic integration
method of [13]. We solve the coupled first order Ampere-
Faraday equations which are discretized in space using a mixed
finite element formulation. This yields the following linear sys-
tem of ODEs

Mε
∂
∂t

e = KT Mµ b−Mε j (33)

∂
∂t

b = −K e

where e and b represent the discrete differential 1-form and 2-
form electric and magnetic fields respectively, Mε is the 1-form
mass matrix computed using the material property function ε to
represent the dielectric properties, Mµ is the 2-form mass matrix
computed using the material property function µ−1 to represent
the magnetic permeability and j is the discrete 2-form time de-
pendent current source. The rectangular matrix K is derived
from a special mixed bilinear form

Dα〈wi, f j〉 =
∫

Ω
(α ∇×wi) · f j = Mα〈fi, f j〉 Ki, j (34)

resulting in a product of the 2-form mass matrix and a new ma-
trix K which we refer to as the topological derivative matrix.
A topological derivative matrix for 1-forms and 2-forms is a
discrete version of the curl operator and is an incidence map
between the discrete differential 1-form and 2-form degrees of
freedom. Specifically, the topological derivative matrix is of the
form

Ki, j = Ai(∇×w j) (35)

where Ai are the 2-form degrees of freedom from (19). In other
words, we construct this matrix by projecting the curl of the
1-form basis functions from (9) onto the dual space of the 2-
form degrees of freedom. Stated another way, we can write
the curl of a 1-form as a linear combination of the 2-form ba-
sis functions. The resulting rectangular matrix contains only
topological information and is independent of the mesh geom-
etry (since the J terms cancel out). It will have a number of
rows equal to the dimension of the discrete 2-form basis and
a number of columns equal to the dimension of the discrete
1-form basis. For the case of first order basis functions (i.e.
p = 1), this matrix is the edge-face topological incident map
commonly found in FDTD and FE methods, consisting of ±1’s
and 0’s [14]. Equation (35) is a generalization of this notion to
higher-order basis functions.

In each of the following examples, the 1-form mass matrix
Mε is solved once per time step with a residual error tolerance
of 10−10 using a preconditioned conjugate gradient algorithm.

A. Resonant Spherical Cavity

In this example we simulate a resonant spherical cavity sub-
ject to a perfect electric conductor (PEC) boundary condition.
The cavity is represented by a very coarse 32 element mesh
(shown in Figure 7) with second order curved surface elements
to accurately model the geometry of the sphere. We generate
an oscillating electromagnetic field inside the cavity by apply-
ing a time dependent vector valued current source to a random
sampling of the interior degrees of freedom. The simple current
source has a temporal profile equal to the second derivative of
a Gaussian pulse. This simulation can be used to compute the
resonant modes of the cavity by Fourier transforming the time
dependent values of the interior degrees of freedom. The prob-
lem is discretized in space using interpolatory basis functions
of degree p = 5 resulting in a dense 1-form mass matrix of di-
mension 12,640 with a total of 9,030,800 non-zero entries. We
let the simulation run for a total of 500 time steps.

We now compare the results of the linear solve performed
at each time step using three different types of preconditioners.
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Typically, the performance of a preconditioner is gauged by the
number of iterations required to achieve some prescribed error
tolerance. However, a reduction in iteration count does not al-
ways imply a reduction in total computational time; the cost
of construction and application of the preconditioner must be
taken into account as well.

In Table III we compare the results of the linear solve per-
formed at each time step using the Silvester-Lagrange (SL) ba-
sis of [3] and the newly proposed extended Chebyshev (EC)
basis using a point Joacobi preconditioner. This simple precon-
ditioner requires minimal computational overhead to construct
and apply, but leads to a modest reduction in iteration count.
For this case, the EC basis runs roughly 11 times faster than the
SL basis. In Table IV we compare results for the same problem
using a sparse approximate inverse preconditioner [15]; in par-
ticular, the algorithm developed by [16]. This preconditioner
requires more construction and application time than point Ja-
cobi, but leads to a more drastic reduction in iteration count;
resulting in a lower total run time. In this case, the EC basis
runs about 3 times faster than the SL basis. Finally, in Table
V we compare the results for the same problem using a paral-
lel ILU preconditioner [17]. Note that for this case, application
of the PILU preconditioner results in essentially the same per-
formance for each basis, substantially reducing the number of
iterations required per step in comparison to the previous pre-
conditioners. However, because of the dense nature of the linear
system, construction costs and application of the preconditioner
at each time step require more total CPU time than the sparse
approximate inverse preconditioner.

Fig. 7. Very coarse spherical cavity mesh with curvilinear surface projection
elements.

B. Coaxial Waveguide

In this example we simulate the propagation of an EM wave
along a coaxial waveguide. We use a very coarse 384 element
mesh (shown in Figure 8) with second order curved elements to
accurately model the geometry of the inner and outer cylindri-
cal walls. The problem is excited with a time dependent voltage
source boundary condition applied to the input cap of the mesh.
The voltage source has a temporal profile equal to a ramped sine
wave function and a spatial profile proportional to the inverse of

SL Basis EC Basis

PreCond. Setup Time ∼0.0 sec ∼0.0 sec
Avg. Iterations/step 629 51
Avg. CPU time/step 35.9 sec 3.27 sec
Total Run Time 299.2 min 27.3 min

TABLE III
COMPARISON OF RESULTS FOR RESONANT CAVITY SIMULATION WITH

POINT JACOBI PRECONDITIONING

SL Basis EC Basis

PreCond. Setup Time 185.3 sec 6.03 sec
Avg. Iterations/step 66 24
Avg. CPU time/step 4.80 sec 1.71 sec
Total Run Time 43.1 min 14.4 min

TABLE IV
COMPARISON OF RESULTS FOR RESONANT CAVITY SIMULATION WITH

SPARSE APPROXIMATE INVERSE PRECONDITIONING

the radial coordinate. A PEC boundary condition is applied to
the inner and outer cylindrical walls while an absorbing bound-
ary condition (ABC) is applied to the end cap of the mesh. The
problem is discretized in space using interpolatory basis func-
tions of degree p = 4. In Table VI we compare the results of
the linear solve performed at each time step for the SL basis and
EC basis using a point Jacobi preconditioner. Note that the EC
basis runs at a substantially faster rate than the SL basis.

Fig. 8. Very coarse coaxial waveguide mesh with curvilinear surface projection
elements.

VIII. CONCLUSIONS

We have proposed a new set of extended Chebyshev interpo-
latory basis functions which make use of a special set of non-
uniform interpolation points. We have demonstrated the im-
proved performance for iterative solutions to linear systems in-
volving finite element matrices which use these basis functions
in comparison to the standard Silvester-Lagrange interpolatory
bases. The basis functions presented here are no more computa-
tionally expensive to implement. Preconditioners can improve
the condition number of a matrix and lead to reduced iteration
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SL Basis EC Basis

PreCond. Setup Time 38.9 min 39.3 min
Avg. Iterations/step 5 5
Avg. CPU time/step 5.87 sec 5.91 sec
Total Run Time 87.9 min 88.5 min

TABLE V
COMPARISON OF RESULTS FOR RESONANT CAVITY SIMULATION WITH

PILU PRECONDITIONING

SL Basis EC Basis

Physical Time 107.5 sec 107.5 sec
Time Step 0.05 sec 0.05 sec
No. Steps 2,150 2,150
No. Unknowns 80,280 80,280
No. Nonzeros 33,055,200 33,055,200
Avg. Iterations/step 225 35
Avg. CPU time/step 12.26 sec 2.33 sec
Total Run Time 439.3 min 83.5 min

TABLE VI
COMPARISON OF RESULTS FOR COAXIAL WAVEGUIDE SIMULATION WITH

POINT JACOBI PRECONDITIONING

count. However, preconditioners are often complicated and ex-
pensive to construct and apply. For linear systems of the form
Ax = b, a preconditioner of the form RT AR (a congruence trans-
formation) is in fact just a change of basis; R is the matrix that
maps the old basis to the new basis. In this sense, the proposed
EC basis can be viewed as a preconditioner applied at the ele-
ment level rather than the matrix level, resulting in better con-
ditioned finite element matrices at no cost. In addition, we have
presented the key ingredients necessary to construct these finite
element matrices; namely, the specific interpolation points, the
basis functions, the degrees of freedom and bilinear forms.
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